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The defocusing NLS equation on the half-line
Dirichlet problem formulation. Well-posedness.

Theorem (Carroll & Bu, Appl. Anal., 41, 1991)

Suppose that q0 ∈ H2(R+) and QD ∈ C2(R+), and assume the
compatibility condition q0(0) = QD(0). Then (for every ε > 0) there
exists a unique global in time classical solution of the Dirichlet problem
for the defocusing nonlinear Schrödinger equation on the half-line.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

Main question: how can the solution q(x, t) be described in any detail?

Recall the Lax pair (Zakharov & Shabat, Sov. Phys. JETP 34, 1972):

ε
∂Ψ

∂x
=

[
−ik q
q∗ ik

]
Ψ

ε
∂Ψ

∂t
=

[
−2ik2 − i|q|2 2kq + iεqx

2kq∗ − iεq∗x 2ik2 + i|q|2
]

Ψ

The condition of simultaneous existence of a fundamental solution
matrix Ψ regardless of the value of the complex parameter k is exactly
that q satisfy the defocusing nonlinear Schrödinger (NLS) equation:

iε
∂q
∂t

+ ε2∂
2q
∂x2 − 2|q|2q = 0.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

The Dirichlet problem can be transformed into a Riemann-Hilbert
problem under some conditions1. First define spectral transforms: Let
QN(t) := εqx(0, t), and define special solutions of the Lax pair:

ε
dX
dx

(x; k) =

[
−ik q0(x)

q0(x)∗ ik

]
X(x; k), lim

x→+∞
X(x; k)eikxσ3/ε = I,

ε
dT
dt

(t; k) =

[
−2ik2 − i|QD(t)|2 2kQD(t) + iQN(t)

2kQD(t)∗ − iQN(t)∗ 2ik2 + i|QD(t)|2
]

T(t; k),

lim
t→+∞

T(t; k)e2ik2tσ3/ε = I.

Then define a map {q0,QD,QN} 7→ {a, b,A,B} by

a(k) := X22(0; k), b(k) := X12(0; k), A(k) := T22(0; k), B(k) := T12(0; k).

1A. S. Fokas, A unified approach to boundary value problems, SIAM, 2008.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

The spectral transforms a and b are analytic and bounded for ={k} > 0,
while A and B are analytic and bounded for ={k2} > 0. Now define

γ(k) :=
b(k)

a(k)
, Γ(k) :=

B(k∗)∗

a(k)d(k)
, γ̃(k) := γ(k)− Γ(k)∗,

where d(k) := a(k)A(k∗)∗ − b(k)B(k∗)∗, and set θ(k; x, t) := kx + 2k2t.
Then define a contour Σ and a “jump matrix” J on Σ \ {0} as:



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

Then formulate a Riemann-Hilbert problem (RHP):

Riemann-Hilbert Problem
Seek M(k; x, t), a 2× 2 matrix function defined for k ∈ C \ Σ such that

M(·; x, t) is analytic in the four quadrants of its domain of definition.
The boundary values M±(k; x, t) taken by M(k; x, t) on Σ \ {0} from
±={k2} > 0 are continuous and linked by the jump matrix:

M+(k; x, t) = M−(k; x, t)J(k; x, t), k ∈ Σ \ {0}.

M(k; x, t)→ I as k→∞.

From the solution of this Riemann-Hilbert problem, define q(x, t) by:

q(x, t) := 2i lim
k→∞

kM12(k; x, t).

Then, q(x, t) is a solution of the defocusing NLS equation.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

The function q(x, t) also satisfies q(x, 0) = q0(x) and q(0, t) = QD(t) if:

The given boundary data {QD,QN} are consistent. That is, QN(t)
agrees with (ε times) the Neumann boundary value of the solution
of the (well-posed) Dirichlet problem with Dirichlet data QD and q0.

d(k) 6= 0 in the closed second quadrant of the complex k-plane.
(Otherwise, poles must be admitted in M(k; x, t) with prescribed
residue data.) J. Lenells recently posted a proof that d(k) 6= 0 for
consistent boundary data {QD,QN}.

Problem: The spectral transforms {A,B} cannot be calculated from the
Dirichlet data QD alone; we also need to know the Neumann data QN.
Specifying both makes the problem overdetermined/inconsistent, so
q(x, t) (from the RHP) cannot generally satisfy the side-conditions.



The defocusing NLS equation on the half-line
Dirichlet problem. Integrable methodology.

A key role in the theory is therefore played by the global relation, an
identity necessarily satisfied by the spectral transforms {a, b,A,B} for
consistent boundary data that encodes the Dirichlet-to-Neumann map
in the spectral domain.

In special situations (so-called linearizable boundary conditions)
the global relation can be effectively solved by means of
symmetries in the complex k-plane.
Unfortunately, the only linearizable Dirichlet problem known
corresponds to the homogeneous Dirichlet boundary condition

QD(t) ≡ 0.

Of course this special case could be handled by the standard
inverse-scattering transform on R by odd extension of q0.



The defocusing NLS equation on the half-line
Iterative approach to the Dirichlet problem.

Since q(x, t) from the RHP always satisfies defocusing NLS, consider
(as an alternative to the global relation) an iterative scheme: given
Dirichlet data QD(t) and q0(x), define QN

0 (t) for t > 0 as an ad-hoc
guess for the unknown Neumann boundary data, and set n = 0.

1 Set QN(t) = QN
n (t), and together with QD(t) and q0(x) calculate the

spectral transforms {a, b,A,B} = {a, b,An,Bn}.
2 Formulate the RHP with these spectral transforms and solve

(unique solution off a “thin” exceptional set by analytic Fredholm
theory). Obtain q = qn(x, t) solving defocusing NLS.

3 Define QN
n+1(t) := ε∂xqn(0, t) for t > 0.

4 Set n := n + 1. Goto step 1.
We show that a modification of the first iteration of this scheme gives a
good approximation to the solution of the boundary-value problem in
the semiclassical limit ε ↓ 0.



The defocusing NLS equation on the half-line
Guessing QN. Semiclassical approximation of the Dirichlet-to-Neumann map.

How to get a good guess QN
0 (t) for the Neumann data? Represent

q(x, t) in real phase-amplitude form:

q(x, t) = η(x, t)eiσ(x,t)/ε, η(x, t) := |q(x, t)|.

Then the defocusing NLS equation can be written exactly as a system:

∂η

∂t
+ 2

∂σ

∂x
∂η

∂x
+ η

∂2σ

∂x2 = 0

∂σ

∂t
+

(
∂σ

∂x

)2

+ 2η2 =
ε2

η

∂2η

∂x2 ,

and the ratio of Neumann to Dirichlet boundary data takes the form:

−i
QN(t)
QD(t)

=
−iε

q(0, t)
∂q
∂x

(0, t) = u(0, t)− iε
η(0, t)

∂η

∂x
(0, t), u(x, t) :=

∂σ

∂x
(x, t).



The defocusing NLS equation on the half-line
Guessing QN. Semiclassical approximation of the Dirichlet-to-Neumann map.

Now consider the formal semiclassical limit ε ↓ 0:

−i
QN(t)
QD(t)

= u(0, t)− iε
η(0, t)

∂η

∂x
(0, t) ≈ u(0, t).

But also (from defocusing NLS),

∂σ

∂t
(0, t) + u(0, t)2 + 2η(0, t)2 =

ε2

η(0, t)
∂2η

∂x2 (0, t) ≈ 0.

For Dirichlet data of the form QD(t) := H(t)eiS(t)/ε, H(t) := |QD(t)|,

−i
QN(t)
QD(t)

≈ u(0, t) and S′(t) + u(0, t)2 + 2H(t)2 ≈ 0.

Assuming that S′(t) < −2H(t)2 for t > 0, eliminate u(0, t) by

u(0, t) ≈ U(t) :=
√
−S′(t)− 2H(t)2 > 0.

The semiclassical approximation of the Dirichlet-to-Neumann map is:

QN(t) ≈ QN
0 (t) := iU(t)QD(t).



The defocusing NLS equation on the half-line
A modification of the first iteration.

For simplicity we consider zero initial data: q0(x) ≡ 0.

We write QD(t) := H(t)eiS(t)/ε, where S′(t) = −2H(t)2 − U(t)2 and H(·)
and U(·) are suitable given functions (more details soon. . . ). Then

a(k) ≡ 1 and b(k) ≡ 0 from the “x-problem” of the Lax pair.

With QN(t) replaced by its formal approximation iU(t)QD(t), the
“t-problem” takes the form

ε
dT
dt

(t; k) =

[
−2ik2 − iH(t)2 (2k − U(t))H(t)eiS(t)/ε

(2k − U(t))H(t)e−iS(t)/ε 2ik2 + iH(t)2

]
T(t; k).

This can be analyzed by WKB-type methods when ε > 0 is small
=⇒ we can accurately and rigorously approximate {A0(k),B0(k)}.



The defocusing NLS equation on the half-line
A modification of the first iteration.

Technical conditions on the functions H : R+ → R and U : R+ → R:

H(t) is real analytic and strictly positive for t > 0.
H and all derivatives vanish as t→ +∞ faster than any power of t.
There is some h0 > 0 such that H(t) = h0t1/2(1 + o(1)) and
H′(t) = 1

2 h0t−1/2(1 + o(1)) as t→ 0 with <{t} ≥ 0.

U(t) is real analytic for t > 0 and U(t) ≥ 2H(t) + δ for some δ > 0.
U′ and all derivatives vanish as t→ +∞ faster than any power of t.
There is a positive number U0 such that U(t) = U0 + o(t1/2) and
U′(t) = O(t−1/2) as t→ 0 with <{t} ≥ 0.

The functions

a(t) := −1
2 U(t)− H(t) and b(t) := −1

2 U(t) + H(t)

each have precisely one critical point in (0,∞), a non-degenerate
maximum for b and a non-degenerate minimum for a.



The defocusing NLS equation on the half-line
A modification of the first iteration.



The defocusing NLS equation on the half-line
A modification of the first iteration.

Rigorous WKB analysis under these assumptions yields:
Any zeros of the function d0(k) := A0(k∗)∗ in the second quadrant
converge to [ka, kb] ⊂ R− in the limit ε ↓ 0.
Γ0(k) := B0(k∗)∗/A0(k∗)∗ = O(ε1/2) uniformly for k ∈ iR and for
k < 0 bounded away from [ka, kb].
Uniformly for k in compact subsets of (ka, kb),

Γ0(k) =
√

1− e−2τ(k)/εe−2iΦ(k)/ε +O(ε)

1− |Γ0(k)|2 = e−2τ(k)/ε(1 +O(ε)),

where with s := sgn(k2 − k2
0) and t−(k) < t+(k) the roots of

(k − a(t))(k − b(t)) (AKA “turning points”),

Φ(k) :=
1
2

S(0) + s
∫ t−(k)

0
(U(t)− 2k))

√
(k − a(t))(k − b(t)) dt

τ(k) :=

∫ t+(k)

t−(k)
(U(t)− 2k)

√
(k − a(t))(b(t)− k) dt.



The defocusing NLS equation on the half-line
A modification of the first iteration.

Based on these asymptotics, we replace the jump matrices by their
leading approximations, yielding a modified RHP. Let Γ̃ be defined on
the real axis by:

Γ̃(k) := χ(ka,kb)(k)Yε(k)e−2iΦ(k)/ε, Yε(k) :=
√

1− e−2τ(k)/ε.

Riemann-Hilbert Problem (modified first iteration)

Seek M̃ : C \ R→ C2×2 such that
M̃ is analytic taking boundary values M̃± : R→ C2×2 from C±.
The boundary values are related by the jump condition

M̃+(k) = M̃−(k)

[
1− |Γ̃(k)|2 −Γ̃(k)∗e−2iθ(k;x,t)/ε

Γ̃(k)e2iθ(k;x,t)/ε 1

]
, k ∈ R.

M̃(k)→ I as k→∞.



The defocusing NLS equation on the half-line
A modification of the first iteration.

Let
q̃ε(x, t) := 2i lim

k→∞
kM̃12(k).

It can be shown that q̃ε(x, t) is for each ε > 0 an infinitely differentiable
solution of NLS. We prove the following additional results.

Theorem (approximation of the initial condition)

The solution q = q̃ε(x, t) of the defocusing nonlinear Schrödinger
equation satisfies

q̃ε(x, 0) = O((log(ε−1))−1/2), x > 0, ε→ 0,

where the error term is uniform on x ≥ x0 for each x0 > 0.

A similar result holds for certain nonzero t as the following corollary (of
the proof) shows. . .



The defocusing NLS equation on the half-line
A modification of the first iteration.

Let t ≥ 0, and let X(t) denote the smallest nonnegative value of x0 for
which the inequality x + 4kt − Φ′(k) ≥ 0 holds for all k ∈ (ka, kb)
whenever x ≥ x0.

Corollary (existence of a vacuum domain)

Let t ≥ 0. The solution q = q̃ε(x, t) satisfies q̃ε(x, t) = O((log(ε−1))−1/2)
as ε ↓ 0 whenever x > X(t).

Explicit asymptotes to X(t) for small and large t > 0 are, respectively,

X0(t) := −4k0t −
h2

0
2k0

t2 and X∞(t) := −4kat − Ca log(t),

where Ca is a constant given by

Ca :=
1
4

(U(ta)− 2ka)
√

b(ta)− ka√
1
2a
′′(ta)

.



The defocusing NLS equation on the half-line
A modification of the first iteration.

The vacuum domain x > X(t) (shaded) and the asymptotes x = X0(t)
(left, dashed) and x = X∞(t) (right, dashed) for H(t) := 1

2 t1/2sech(t) and
U(t) := 2− 1

2 tanh(t).



The defocusing NLS equation on the half-line
A modification of the first iteration.

Theorem (approximation of boundary conditions)

Suppose that t > 0 and t 6= ta, t 6= tb. The solution q = q̃ε(x, t) of the
defocusing nonlinear Schrödinger equation satisfies

q̃ε(0, t) = H(t)eiS(t)/ε +O((log(ε−1))−1/2)

εq̃εx(0, t) = iU(t)H(t)eiS(t)/ε +O((log(ε−1))−1/2)

as ε ↓ 0, where the error terms are uniform for t in compact
subintervals of (0,+∞) \ {ta, tb}.

Again, the proof generalizes also for sufficiently small x > 0 as the
following corollary shows. . .



The defocusing NLS equation on the half-line
A modification of the first iteration.

Corollary (existence of a plane-wave domain)

Each point (0, t0) with t0 > 0 and t0 6= ta, tb has a neighborhood Dt0 in
the (x, t)-plane in which there exist unique differentiable functions
α(x, t) and β(x, t) satisfying α(0, t) = a(t), β(0, t) = b(t), and

∂α

∂t
− (3α+ β)

∂α

∂x
= 0,

∂β

∂t
− (α+ 3β)

∂β

∂x
= 0.

Moreover, q̃ε(x, t) = η(x, t)eiσ(x,t)/ε +O((log(ε−1))−1/2) holds uniformly
for (x, t) ∈ Dt0 as ε ↓ 0, where

η(x, t) := 1
2(β(x, t)−α(x, t)) and σ(x, t) = S(t)−

∫ x

0
[α(y, t) + β(y, t)] dy.

Note that η(x, t) and σ(x, t) satisfy the dispersionless defocusing NLS:

∂η

∂t
+ 2

∂σ

∂x
∂η

∂x
+ η

∂2σ

∂x2 = 0,
∂σ

∂t
+

(
∂σ

∂x

)2

+ 2η2 = 0.
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About the proofs.

The second theorem and its corollary are proved by the Deift-Zhou
steepest descent method for RHPs, specifically using genus zero
g-function techniques. [Another lecture. . . ]

Proving the first theorem and its corollary involves showing that the
RHP for M̃(k) can be transformed into a “small-norm problem,” i.e., one
for which the jump matrix is nearly I. An algebraic factorization is
required and technical obstructions arise due to:

complicated behavior of the jump matrix factors near k = ka and
k = kb, and
non-analyticity of the jump matrix factors at certain points in
(ka, kb).

The latter analytical issue can be handled using the ∂ steepest
descent method, a generalization of the Deift-Zhou method.



The defocusing NLS equation on the half-line
Proof of the “initial-data approximation” theorem.

The jump matrix (on R) is exactly the identity except for ka < k < kb,
where it admits the natural factorization[

1− |Γ̃(k)|2 −Γ̃(k)∗e−2iθ(k;x,t)/ε

Γ̃(k)e2iθ(k;x,t)/ε 1

]
=[

1 −Γ̃(k)∗e−2iθ(k;x,t)/ε

0 1

] [
1 0

Γ̃(k)e2iθ(k;x,t)/ε 1

]
, ka < k < kb.

Recall that Γ̃(k) = Yε(k)e−2iΦ(k)/ε with Yε(k) =
√

1− e−2τ(k)/ε ≈ 1. If
θ(k; x, t)− Φ(k) is strictly increasing, we should try to deform the
first/second factor into the lower/upper half-plane, “opening a lens”
about the interval [ka, kb].

However, we must proceed with care, because there are isolated
points of non-analyticity of Φ and τ , and hence of Γ̃(k).



The defocusing NLS equation on the half-line
Proof of the “initial-data approximation” theorem.

Assumptions in force on U and H =⇒
Important properties of τ : [ka, kb]→ R:

τ(k) is analytic for k ∈ [ka, kb] \ {k0, k∞}, and is C0 near k0 and k∞.
τ(k) > 0 holds strictly on (ka, kb).
τ(ka) = τ(kb) = 0, while τ ′(ka) > 0 and τ ′(kb) < 0.

Important properties of Φ : [ka, kb]→ R:
Φ(k) is analytic for k ∈ (ka, kb) \ {k0}, and is C3 near k = k0.
Φ′(k) ≤ 0 for ka < k < kb with equality only for k = k0.
Φ has an analytic continuation Φa (Φb) into the complex plane from
a right (left) neighborhood of ka (kb) satisfying

Φa,b(k) = Φ(ka,b)+Ca,b(k−ka,b) log(|k−ka,b|)+O(k−ka,b), k→ ka,b,

where Ca = τ ′(ka)/(2π) > 0 and Cb = −τ ′(kb)/(2π) > 0.



The defocusing NLS equation on the half-line
Proof of the “initial-data approximation” theorem.

In particular if the lens about [ka, kb] is opened with nonzero acute
angles at the endpoints ka and kb, then

Γ̃(k) = O((log(ε−1))−1/2) holds uniformly near ka,b along the lens
boundary in C+, and
Γ̃(k∗)∗ = O((log(ε−1))−1/2) holds uniformly near ka,b along the lens
boundary in C−.

The main idea behind this fact is that while the exponential decay of
e∓2iΦ(k)/ε is not uniform near the endpoints, the factor

Yε(k) =
√

1− e−2τ(k)/ε

vanishes like a square root. The net result is uniform (albeit very slow)
decay as ε ↓ 0.
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Proof of the “initial-data approximation” theorem.

The factor Yε(k) fails to be analytic at k0, k∞. But since Yε(k)− 1 is
exponentially small except near ka, kb, we can simply “leave it on R” in
the interior of (ka, kb) when we open the lens (details coming soon. . . ).

The fact that Φ′(k) ≤ 0 on (ka, kb) suggests that we can use this
monotonicity to obtain decay by deforming matrix factors into C±
(that’s what steepest descent is all about). The non-analyticity of Φ at
k = k0 will be an obstruction.

We obtain an appropriate non-analytic extension of Φ(k) into the
complex plane by following the ∂ steepest descent method2.

2K. T.-R. McLaughlin and P. D. Miller, Int. Math. Res. Not. 2008, 1–66, 2008.
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Proof of the “initial-data approximation” theorem.

Let kr := <{k} and ki := ={k}. We first define a non-analytic extension
of Φ(kr) by the formula

Φ̂0(kr, ki) := Φ(kr) + ikiΦ
′(kr) +

1
2

(iki)
2Φ′′(kr).

Note that Φ̂0(kr, ki) is nearly analytic near the real axis ki = 0 in the
sense that

∂Φ̂0(kr, ki) =
1
2

(
∂

∂kr
+ i

∂

∂ki

)
Φ̂0(kr, ki) =

1
4

(iki)
2Φ′′′(kr) = O(k2

i )

because Φ is three times continuously differentiable. Also, by Taylor’s
formula,

Φ̂0(kr, ki)− Φa(k) = O(k3
i ), ka < kr < k0

Φ̂0(kr, ki)− Φb(k) = O(k3
i ), k0 < kr < kb.
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Proof of the “initial-data approximation” theorem.

To get the O((log(ε−1))−1/2) bound on Γ̃ near ka,b, we need the analytic
functions Φa,b; but we are forced to use a non-analytic extension of Φ
near k0. Smoothly join them with a “bump function” B ∈ C∞(R; [0, 1]):

for some small δ > 0, B(u) =

{
1, |u− k0| < δ

0, |u− k0| > 2δ.

The extension of Φ that we will actually use is then given by the formula

Φ̂(kr, ki) :=

{
B(kr)Φ̂0(kr, ki) + (1− B(kr))Φa(k), kr ∈ (ka, k0]

B(kr)Φ̂0(kr, ki) + (1− B(kr))Φb(k), kr ∈ [k0, kb).

Then ∂Φ̂(kr, ki) = O(k2
i ) holds uniformly for kr ∈ (ka, kb) because:

∂Φ̂(kr, ki) =

{
B(kr)∂Φ̂0(kr, ki) + ∂B(kr) · (Φ̂0(kr, ki)− Φa(k)), kr ∈ (ka, k0]

B(kr)∂Φ̂0(kr, ki) + ∂B(kr) · (Φ̂0(kr, ki)− Φb(k)), kr ∈ [k0, kb).
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Proof of the “initial-data approximation” theorem.

Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M̃(k) 7→ O(kr, ki) by the following
formulae: in the “bulk”, we set

O(kr, ki) := M̃(k)

[
1 0

−e2i(θ(k;x,t)−Φ̂(kr,ki))/ε 1

]
, k ∈ Ω+,

O(kr, ki) := M̃(k)

[
1 −e2i(Φ̂(kr,ki)−θ(k;x,t))/ε

0 1

]
, k ∈ Ω−,
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Proof of the “initial-data approximation” theorem.

Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M̃(k) 7→ O(kr, ki) by the following
formulae: near ka,b, we set

O(kr, ki) := M̃(k)

[
1 0

−Yεa,b(k)e2i(θ(k;x,t)−Φa,b(k))/ε 1

]
, k ∈ ω+

a,b,

O(kr, ki) := M̃(k)

[
1 −Yεa,b(k)e2i(Φa,b(k)−θ(k;x,t))/ε

0 1

]
, k ∈ ω−a,b,
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Proof of the “initial-data approximation” theorem.

Now we open lenses. Consider these domains in the complex plane:

Make an explicit substitution M̃(k) 7→ O(kr, ki) by the following
formulae: and in the exterior domain, we set

O(kr, ki) := M̃(k), k ∈ Ω∞.
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Proof of the “initial-data approximation” theorem.

The matrix O has jump continuities across a contour Σ illustrated here:

It is piecewise analytic except in the shaded region, a strip in the lens
of width 4δ centered at kr = k0. O(kr, ki) satisfies the conditions of a
hybrid Riemann-Hilbert-∂ problem.
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Proof of the “initial-data approximation” theorem.

Hybrid Riemann-Hilbert-∂ Problem

Find a 2× 2 matrix O(kr, ki) with the following properties:
O is continuous in each connected component of R2 \ Σ taking
continuous boundary values O± on each oriented arc of Σ.
On each oriented arc of Σ there is a given and well-defined jump
matrix J0(kr, ki) such that the boundary values O± are related
along that arc by the jump condition O+(kr, ki) = O−(kr, ki)J0(kr, ki).
On each connected component of R2 \ Σ, there is a given
well-defined continuous matrix function W such that
∂O(kr, ki) = O(kr, ki)W(kr, ki) holds.
O(kr, ki)→ I as (kr, ki)→∞ in R2.
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When t = 0 and x > 0, this is a small-norm problem in the sense that:
‖J0 − I‖L∞(Σ) = O((log(ε−1))−1/2) and
‖W‖L∞(R2\Σ) = O(ε).

These estimates depend on the following facts:

Fact #1: for ka < k < kb,

θ′(k; x, 0)− Φ′(k) = x− Φ′(k) ≥ x > 0.

This is enough to control all of the analytic exponential factors (decay
follows from the Cauchy-Riemann equations). It also controls the
non-analytic exponential factors, since the exponents are dominated
for small ki (as the lens is sufficiently thin) by the linear terms in Φ̂0,
which again involve Φ′(kr).
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Fact #2: for k bounded away from the endpoints ka, kb, Yεa,b(k)− 1 is
exponentially small as ε ↓ 0. This controls J0 − I on the real axis, where
we’ve “left” Yε(k), and on the vertical contour segments σ↑,↓a,b .

Facts #1 and #2 yield the estimate ‖J0 − I‖L∞(Σ) = O((log(ε−1))−1/2).

Fact #3: from ∂Φ̂(kr, ki) = O(k2
i ), and the explicit formula

W(kr, ki) =



[
0 0

2iε−1∂Φ̂(kr, ki) · e2i(θ(k;x,t)−Φ̂(kr,ki))/ε 0

]
, k ∈ Ω+[

0 −2iε−1∂Φ̂(kr, ki) · e2i(Φ̂(kr,ki)−θ(k;x,t))/ε

0 0

]
, k ∈ Ω−,

we get an estimate of the form ‖W(kr, ki)‖ ≤ Kε−1k2
i e−C|ki|/ε for

k ∈ Ω+ ∪ Ω−. Elsewhere, W vanishes identically. This yields the
estimate ‖W‖L∞(R2\Σ) = O(ε).
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We use these estimates on J0 − I and W to solve the hybrid
Riemann-Hilbert-∂ problem in two steps:

1 First, ignore the jump conditions altogether, and solve the “∂ part”
of the problem.

2 Then use the solution of the “∂ part” as a parametrix and obtain a
standard small-norm Riemann-Hilbert problem for the error.

The “∂ parametrix” solves the following problem.

∂ Problem

Find a 2× 2 matrix Ȯ(kr, ki) with the following properties:
Ȯ : R2 → C2×2 is continuous.
∂Ȯ(kr, ki) = Ȯ(kr, ki)W(kr, ki) holds in the distributional sense.
Ȯ(kr, ki)→ I as (kr, ki)→∞ in R2.
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To solve the ∂ problem, we set up an equivalent integral equation
involving the solid Cauchy transform:

Ȯ(kr, ki) = I +KȮ(kr, ki)

where the action of the integral operator K is given by

KF(kr, ki) := − 1
π

∫∫
Ω+∪Ω−

F(k′r, k
′
i)W(k′r, k

′
i) dA(k′r, k

′
i)

k′ − k
, dA(kr, ki) := dkr dki.

The operator norm of K acting on L∞(R2) is easy to estimate because
the Cauchy kernel is locally integrable on R2:

‖K‖L∞(R2)	 ≤
1
π
‖W‖L∞(R2) sup

(kr,ki)∈R2

∫∫
Ω+∪Ω−

dA(k′r, k
′
i)

|k′ − k|
,

and the latter supremum is finite. Hence ‖K‖L∞(R2)	 = O(ε).
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Iteration shows that Ȯ(kr, ki) is uniquely determined from the conditions
of the ∂ problem, and that ‖Ȯ− I‖L∞(R2) = O(ε). In particular Ȯ−1

exists for sufficiently small ε and ‖Ȯ−1 − I‖L∞(R2) = O(ε).

Now use Ȯ (solving the ∂ problem) as a parametrix for O (solving the
hybrid Riemann-Hilbert-∂ problem). Consider the substitution

E(kr, ki) := O(kr, ki)Ȯ(kr, ki)
−1.

As it is true for both factors, E(kr, ki)→ I as (kr, ki)→∞. Also, by a
direct calculation, one checks that for all k ∈ C \ Σ, ∂E = 0. Therefore
E is sectionally analytic and so we will write E = E(k).
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The jump of E(k) across the contour Σ is easily obtained in terms of
the “old” jump matrix J0 via conjugation by Ȯ:

E+(k) = E−(k)Ȯ(kr, ki)J0(kr, ki)Ȯ(kr, ki)
−1, k ∈ Σ.

Because
Ȯ = I +O(ε) and Ȯ−1 = I +O(ε) uniformly on Σ, and
J0 = I +O((log(ε−1))−1/2) uniformly on Σ,

E+(k) = E−(k)(I +O((log(ε−1))−1/2) holds uniformly on Σ. Therefore,
for ε > 0 sufficiently small, E satisfies the conditions of small-norm
RHP in the L2(Σ) sense.
By standard arguments, E(k)− I = O((log(ε−1))−1/2) as ε ↓ 0 and

E1 := lim
k→∞

k(E(k)− I) = O((log(ε−1))−1/2).

Unraveling the relationships M̃→ O→ E completes the proof.
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Proving the corollary amounts to the observation that the role of x > 0
and t = 0 in the proof was simply to provide the inequality (cf., Fact #1)

θ′(k; x, 0)− Φ′(k) = x− Φ′(k) ≥ x > 0.

More generally, if t ≥ 0, we can still have

θ′(k; x, t)− Φ′(k) = x + 4kt − Φ′(k) > 0, k ∈ (ka, kb),

provided that x > 0 is sufficiently large (given t). This condition defines
the boundary x = X(t) of the vacuum domain.

Note: if f (·) := −Φ′(·) is convex, then X(t) may be explicitly given in
terms of the Legendre dual f ∗:

X(t) := f ∗(−4t) = [−Φ′]∗(−4t), t > 0, f ∗(p) := sup
ka<k<kb

(pk − f (k)).



Conclusion

Semiclassical asymptotics and steepest descent techniques for
Riemann-Hilbert and ∂-problems can be combined with the so-called
unified transform method (“inverse-scattering transform for
initial-boundary-value problems”) to produce accurate approximate
solutions of non-homogeneous Dirichlet boundary-value problems for
defocusing NLS without the use of the global relation.

Reference: P. D. Miller and Z.-Y. Qin, “Initial-boundary value problems
for the defocusing nonlinear Schrödinger equation in the semiclassical
limit,” Stud. Appl. Math., 134, 276–362, 2015.

Thank You!


